6 research outputs found

    Factory modelling: data guidance for analysing production, utility and building architecture systems

    Get PDF
    Work on energy and resource reduction in factories is dependent on the availability of data. Typically, available sources are incomplete or inappropriate for direct use and manipulation is required. Identifying new improvement opportunities through simulation across factory production, utility and building architecture domains requires analysis of model feasibility, particularly in terms of system data composition, input resolution and simulation result fidelity. This paper reviews literature on developing appropriate model data for assessing energy and material flows at factory level. Gaps are found in guidance for analysis and integration of resource-flows across system boundaries. The process for how data was prepared, input and iteratively developed alongside conceptual and simulation models is described. The case of a large-scale UK manufacturer is presented alongside discussions on challenges associated with factory level modelling, and the insights gained from understanding the effect of data clarity on system performance

    Factory Eco-Efficiency Modelling: Framework Development and Testing

    Get PDF
    Eco-efficiency is becoming an increasingly important organisational performance measure. Its indicators are regularly used alongside productivity, cost, quality, health and safety in operations and corporate social responsibility reporting. The purpose of this paper is to show an eco-efficiency modelling framework, and its application in the case of an automotive manufacturer. The framework composes, models and analyses resource and production data. Focus on energy, water distributions and material transformations in manufacturing, utility and facility assets are used to analyse eco-efficiency. Resources are examined in respect to three data granularity factors: subdivision, pulse, and magnitude. Models are linked with performance indicators to assess asset eco-efficiency. This work contributes to industrial sustainability literature by introducing a modelling framework that links with data granularity and eco-efficiency indicators

    Factory eco-efficiency modelling: data granularity and performance indicators

    Get PDF
    Eco-efficiency is becoming an increasingly important performance measure. Currently manufacturers rely on reactive methods such as auditing for assessment. There are still significant theoretical and practical barriers including a lack of knowledge regarding the selection and composition of appropriate data granularities, model quality to improve decision making, and split incentives between facilities and manufacturing asset management. The purpose of this paper is to show the application of an eco-efficiency modelling framework in the case of a fast-moving consumer goods factory. The framework composes resource and production data. These are analysed with respect to three data granularity factors, asset subdivision, time-step, and resource magnitude. Modelling is used to represent asset eco-efficiency across available subdivisions using performance indicators

    A collection of tools for factory eco-efficiency

    Get PDF
    co-efficiency is generally defined as doing more with less, aiming to decouple environmental impact from economic and social value creation. This paper presents three tools to guide the implementation of eco-efficiency in factories: (1) definition and patterns of good practices for sustainable manufacturing, (2) a self-assessment tool and maturity grid, and (3) a factory modelling framework

    Factory Eco-Efficiency Modelling: Framework Development and Testing

    No full text
    Abstract: Eco-efficiency is becoming an increasingly important organisational performance measure. Its indicators are regularly used alongside productivity, cost, quality, health and safety in operations and corporate social responsibility reporting. The purpose of this paper is to show an eco-efficiency modelling framework, and its application in the case of an automotive manufacturer. The framework composes, models and analyses resource and production data. Focus on energy, water distributions and material transformations in manufacturing, utility and facility assets are used to analyse eco-efficiency. Resources are examined in respect to three data granularity factors: subdivision, pulse, and magnitude. Models are linked with performance indicators to assess asset eco-efficiency. This work contributes to industrial sustainability literature by introducing a modelling framework that links with data granularity and eco-efficiency indicators

    Factory eco-efficiency modelling: the impact of data granularity on manufacturing and building asset simulation results quality

    Get PDF
    Purpose – This paper reports on the experimentation of an integrated manufacturing and building model to improve energy efficiency. Traditionally, manufacturing and building-facilities engineers work independently, with their own performance objectives, methods and software support. However, with progresses in resource reduction, advances have become more challenging. Further opportunities for energy efficiency require an expansion of scope across the functional boundaries of facility, utility and manufacturing assets
    corecore